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We study numerically a lattice model of semiflexible homopolymers with nearest 
neighbor (nn) attraction and energetic preference for straight joints between 
bonded monomers. For this we use a new Monte Carlo algorithm, the "pruned- 
enriched Rosenbluth Method" (PERM). It is very efficient both for relatively 
open configurations at high temperatures and for compact and frozen-in low-T 
states. This allows us to study in detail the phase diagram as a function of nn 
attraction e and stiffness x. It shows a 0-collapse line with a transition from 
open coils (small e) to molten compact globules (large ~) and a freezing trans- 
ition toward a state with orientational global order (large stiffness x). 
Qualitatively this is similar to a recently studied mean-field theory [ S. Doniach, 
T. Garel, and H. Orland (1996), J. Chem. Phys. I05(4), 1601], but there are 
important differences in details. In contrast to the mean-field theory and to 
naive expectations, the 0-temperature increases with stiffness x. The freezing 
temperature increases even faster, and reaches the 0-line at a finite value of x. 
For even stiffer chains, the freezing transition takes place directly, without the 
formation of an intermediate globular state. Although being in conflict with 
mean-field theory, the latter had been conjectured already by Doniach et al. on 
the basis of heuristic arguments and of low-statistics Monte Carlo simulations. 
Finally, we discuss the relevance of the present model as a very crude model for 
protein folding. 
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1. INTRODUCTION 

The statistical mechanical study of protein folding (~) is still at its beginning. 
Minimal models try to represent its gross features by incorporating only 
those few ingredients that are supposed basic for its qualitative understand- 
ing. Mainly with this motivation, Doniach et  al. (2) studied recently a model 
of semi-stiff lattice chains. In this model monomers are located at the sites 
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of a simple cubic lattice. An attraction between non-bonded nearest 
neighbors was included to mimic the effect of average hydrophobicity. In 
order to induce an ordering phase transition between a random (molten) 
globule and a frozen configuration~which would mimic a uniquely folded 
protein~, an interaction was included which favored straight joints 
between bonds along the polymer backbone over rectangular joints. One 
way to interpret this, pointed out in ref. 2, is to interpret each "monomer" 
as a ~-helical turn (ca. 3 amino acids), and to consider the ordering trans- 
ition as a transition to a protein consisting only of ~-helices. 

Depending on the temperature and the chain stiffness, three phases 
were indeed found in ref. 2 by means of a mean field theory: an open coil 
at high T, a collapsed but "molten" globule at intermediate T and low stiff- 
ness, and a "frozen" state at low T and large stiffness. The coil-globule 
transition had all typical features of the 0-transition found at zero stiffness: 
it is second order (indeed, it is a tricritical phenomenon(3)), and To should 
depend only weakly on chain stiffness. The freezing transition at T=  TF 
should however be first order. Although the mean field theory predicted 
that TF < To for all values of the stiffness, it was conjectured in ref. 2 that 
this might indeed not be correct, and that Tr might indeed become larger 
than To for sufficiently stiff chains. If that is the case, then one should 
observe a direct first order transition from open coils to ordered states for 
very stiff chains. This was at least not contradicted by Monte Carlo simula- 
tions made by the same authors, ~2) but the simulations were hardly con- 
vincing as the authors were not able to simulate sufficiently long and stiff 
chains. 

Actually, models similar to the above had been studied already much 
earlier ~4-~~ as models for other semi-stiff polymers like, e.g., DNA. 
Baumgfirtner et al. and Mansfield (5-7' ~o) studied indeed melts consisting of 
many short semi-stiff chains. Thus they could not address the problem of 
0-collapse, but they showed very convincingly that there is a first-order 
ordering transition on the simple cubic lattice, while there is presumably a 
second order ordering transition in 2-d. Since the transition in 3-d was 
found for long chains and did not seem to become smoother with chain 
length, it is very plausible that it should coincide with the freezing trans- 
ition found in ref. 2, in the limit of infinite chain length. The results of ref. 2 
and refs. 5-7, 10 are indeed fully consistent. 

The opposite case of a single chain, but at parameters where freezing 
was out of range, was studied in refs. 8 and 9. These authors were mainly 
interested in the problem whether stiffness increases or decreases the theta 
temperature To. Naively one might expect that stiffness should make 
collapse less easy, and should therefore decrease To. A swelling with 
increased stiffness at fixed T,~ To[non.stif f w a s  indeed seen in in refs. 8 and 
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9 for short chains. But these authors were careful to point out that this 
might be a finite-size effect, and that the actual value of To (defined via the 
limit N ~ oo) might actually increase. For very long chains, stiffness might 
actually foster collapse: once a hairpin has been made, it might be much 
easier to follow a stiff chain than a completely flexible one. As we said 
already, the mean field theory of ref. 2 predicted that this effect should 
invalidate the naive argument, and To should be independent of stiffness. 

Seen as a rudimentary protein model, the above model lacks of course 
one essential ingredient, namely heterogeneity. It is usually assumed that 
heterogeneity between individual amino acids is the main force which 
drives a collapsed polypeptide into a unique native configuration. Never- 
theless, it might be that stiffness plays a similar role as heterogeneity, in 
which case the model of ref. 2 might catch typical features of real protein 
folding. Indeed, in a recent treatment of random copolymers (~1) the authors 
found a phase diagram (Fig. 3 of ref. 11 ) which is surprisingly similar to the 
one found in ref. 2. 

To elucidate these intriguing questions, we decided to perform more exten- 
sive Monte Carlo simulations. A further motivation was to test a novel 
algorithm, the Pruned-Enriched-Rosenbluth-Method (PERM) developed 
by one of us. (lz) This is a chain growth algorithm superficially similar to 
the one used also in ref. 2, but with some essential differences. It has proven 
extremely efficient in a number of problems, most of which involved 
however rather open configurations: free SAW's, (13) 0-collapse of flexible 
chains, (~2) and coagulation transition in dilute solutions, (~4) just to name a 
few. We wanted to see how it performs at very low energies and near first 
order phase transitions, before using it in more realistic studies of protein 
folding. 

The paper is organized as follows. After a brief description of the 
model and of the algorithm that we used (Section 2), we present our 
numerical results concerning the transition to the globular phase (Sec- 
tion 3) and the freezing transition (Section 4). In Section 5 we finally dis- 
cuss these results, draw our conclusions, and point out further open 
problems. 

2. THE MODEL AND THE ALGORITHM 

We represent a polymer as a self-avoiding random walk (SAW) on a 
simple cubic lattice. (3) Thus, monomers are placed on the lattice sites, and 
double occupancy of a site is strictly forbidden. Boundary conditions will 
be discussed below, as we used different ones for different purposes. The 
energy of the chain takes into account two contributions: a negative energy 
- e  for each non-bonded occupied nearest-neighbor pair (this is the 
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standard attraction used in simulations of 0 polymers(~5)), and a positive 
energy xe for each change of direction of the walk, i.e., for each non- 
collinear pair of successive bonds. The parameter x will be called stiffness. 
Depending on the interpretation of the model, it might represent the fact 
that trans bonds are energetically favored over gauche bonds, or that 
helices are favored over random secondary structures. 

In the following we shall assume that e=kn ,  or in other words we 
shall measure temperatures in units of e/kn where k n is the Boltzmann con- 
stant. We will also use sometimes the Boltzmann factor q = e'/knr= e l/r as 
a control parameter. 

The algorithm that we use, PERM, is described in detail in ref. 12. 
Here we recall for completeness its main aspects, adding some technical 
details which were important to simulate systems at very low temperature. 

The starting point of PERM is the Rosenbluth-Rosenbluth method 
(RR), developed already in 1955. (~6) In this method, a chain is built by 
adding a new monomer at each time step. Assume we are at step n, and the 
last placed monomer has m,_~ free neighbors. If m._~ >i 1, the new 
monomer ls placed with some probability p.(k) in the kth free neighbor 
site, and the algorithm continues. If not, we discard the chain and start a 
new one. Irrespective of the precise form of p,(k) this would introduce a 
bias towards compact configurations with few free neighbors, if all 
generated chains were given the same weight. Thus each generated con- 
figuration carries a weight which compensates for this bias. In addition, 
this weight will take care of the Boltzmann weight. In the simplest ease of 
uniform neighbor sampling, p , ( k )=  1/m._~, the total weight of a chain 
should be 

with 

2V 

W~v= 1-I w,,(k,,) (1) 

w,,(k) = z m , , _  l e -z* . /knr  (2) 

z being a fugacity we are free to choose. More generally, we can use any 
p,,(k) (provided it is non-zero for each allowed neighbor), and weights 

e --Ek/kmT 

w,,(k) = z ~  (3) 
p,,(k) 

This algorithm will be optimal if we manage to keep w,,(k) constant 
and to avoid traps in which m, = 0: in this ideal case~which is of course 
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impossible to reach in practice--each attempted chain growth would suc- 
ceed, and we would have perfect importance sampling. 

In real life each factor w~(k) will fluctuate, giving roughly a lognormal 
distribution for W~r Thus, for very long chains, the RR ensemble is 
dominated by rare configurations with very high weight, leading to serious 
statistical problems, t ~v) 

To overcome this difficulty, PERM uses another classical idea of 
polymer simulations: enrichment. (~s) Originally, this was devised as a 
method to overcome attrition, i.e., the exponential decrease of the number 
of successful attempts in "simple sampling" (here, in contrast to the RR 
method, all neighbors of the last placed monomers are sampled with the 
same probability, whether they are free or not). It consists simply in replac- 
ing unsuccessful attempts by copies of successful ones (in this respect 
enrichment is similar to a genetic algorithm). In PERM, enrichment is 
implemented by monitoring the weight W~ of partially grown chains. If W~ 
exceeds some preselected upper threshold W~,  we make two or more 
copies of the chain; divide W~ by the number of copies made; place all 
except one onto a stack; and continue with the last copy. In this way the 
total weight W~ is exactly preserved, but it is more evenly spread on several 
configurations. This is done at every chain length n. 

The last entry to the stack is fetched if the current chain has reached 
its maximal length N, or if we "prune" it. Pruning (the opposite of enrich- 
ment) is done when the current weight W~ has dropped below some lower 
threshold W~.  If this happens, we draw a random binary number r, with 
prob{ r,, = 0} = prob{ r, = 1} = 1/2. If r, = 1, we keep the chain but double 
its weight. If not, we discard ("prune") it, and continue with the last entry 
on the stack. If the stack is empty, we start a new chain. When the latter 
happens, we say we start a new "tour." Chains within one tour are 
correlated, but chains from different tours are strictly uncorrelated except 
through the dependence of W~ and W~ > on previous tours. 

One can easily see that this algorithm is correct in the sense that the 
average partition sum estimate agrees exactly with the exact partition sum, 
provided we estimate it only between finished tours (i.e. at empty stack), 
and provided the total number of tours itself is uncorrelated with the parti- 
tion sum. The latter would not be the case if we would stop the algorithm 
after some preset CPU time (we would not sample properly very large 
tours, and put too much weight on small ones). We should also remember 
that the algorithm cannot give strictly unbiased estimates for free energies 
and for observables which are essentially based on free energies (such as 
end-to-end distances, which are derivatives of F with respect to some exter- 
nal field), if the fluctuations of the partition sum estimates are large. This 
follows from the fact that the mean value of a nonlinear function of a 
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fluctuating variable is not equal to the same function of the the mean, 
f ( ( A ) ) #  ( f (A) ) .  This is the main problem at very low temperatures. It 
is true that this bias is always smaller than the true statistical errors. But 
we can only estimate errors empirically from the observed fluctuations, and 
these may seriously underestimate the true ones, if the tails of the distribu- 
tions are not sampled properly. For  this reason, we also refrain from giving 
explicit error bars. They can be estimated by comparing results for different 
temperatures (see the caption to Fig. 1 ). In many cases they are smaller 
than the thickness of the lines (e.g., in Fig. 1 for N < 500). Otherwise, as for 
low T and long chains, errors can become very large as seen from the very 
large fluctuations in, e.g., Figs. 4 and 6. 

In the code that we use, the algorithm is implemented recursively. A 
subroutine adds a monomer at a time. When we want to enrich a chain, 
we call the subroutine twice (or more, if we want to place more than one 
copy onto the stack), reducing accordingly the weight. When we want to 
prune a chain, we leave the subroutine without calling itself with probabil- 
ity 1/2, and else double the weight. Actually, instead of placing copies onto 
the stack a't each enrichment even~, we keep only one master copy which 
is updated at each step. In addition, we have an array of counters which 
tells us for every chain length how many copies of this length are still to 
be handled, and an array which shows the occupancy of each lattice site. 

This implementation is in contrast to the implementation of the 
enrichment idea in ref. 2, which is more in spirit of a genetic algorithm: at 
each time, a large population of copies is kept in memory, each of the same 
length n, and pruning and enrichment are done by replacing low-weight 
chains by copies of high-weight chains. This can be efficient on large 
parallel machines, but it poses formidable storage and data transfer 
problems. For  finite-size populations there are also corrections which are 
not easy to analyze. 

A crucial advantage of PERM is the fact that all cont ro ls~the  selec- 
tion probability p,(k), the thresholds W~ > and W~ < , and the number of 
copies made--are  dummies which can be modified at any stage of the run. 
We can thus adjust them automatically in response to problems which 
might arise. This is a major improvement over other recursive chain growth 
methods,(~5, ~9) where the fugacity is a control parameter which cannot be 
changed during the run without introducing a bias. 

A first good choice is' to take W~ > and w~ < proportional to the 
current average of IV,, W~ > = c + ( W ~ )  and W~ < = c _ ( I V , ) ,  with coef- 
ficients c• = O(1).(~2) Notice that with this choice the dependence on the 
fugacity z drops out, and we can choose it arbitrarily. For temperatures 
close to To we used this with c§ = 3 to 10, and c +/c_ ~ 10 to 50. Within 
this wide range of parameters this was very efficient. 
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Problems arose however at very low T, since there the current 
estimate ( I V , )  might be very wrong. The most dangerous and common 
situation is that we underestimate (W ~)  since we have not yet encountered 
a "good" (i.e., low energy) configuration. When such a configuration 
finally appears, our thresholds are too low (occasionally by many orders 
of magnitude), and we produce an enormous amount of copies without 
pruning them sufficiently. Our way out of this dilemma consists in letting 
c+ depend on the total number of copies of length n already made during 
the present tour. If this number is becoming too large, we increase c+ for 
the corresponding n. But this alone would reduce the total number of very 
long chains produced, since these are most affected by fluctuations and 
thus c +(n) is changed mostly for large n. The algorithm is most efficient if 
the sample size is the same for all chain lengths. We cannot enforce this 
precisely, but we can place a strong bias towards it by choosing c• propor- 
tional to the total sample size. For technical reasons, we indeed segmented 
the set of tours into bunches of typical size 102 to 103 . We replaced the 
number of configurations made during the present tour by that made dur- 
ing the present bunch. Let us call this M bunch, while Mtn ~ is the total num- 
ber of configurations generated so far. We then used 

0 ( M  tn~ ) ~ 
C+ =C + k,M]otai (1 + MbnUnCh/a) p (4) 

with c+~ ~5 ,  c+~ ~ = ~ 20, a ~ 103 - 10 4, and exponents 0c and fl either 1 
or 2. The larger values for 0c and fl were needed for the lowest values of T. 

o The prefactors c+ can be learned from preliminary runs with small 
chain lengths. A more systematic strategy which was quite successful con- 
sisted in a rudimentary genetic algorithm (with mutation and replacement 
by the fittest only, but without cross-over) by which we let a population of 

o cO pairs (c +, _) evolve. 
At high temperatures, it was sufficient to make just one new copy per 

enrichment event. At low T this was not enough to prevent weights from 
growing too large. We used a number of schemes which all allowed a large 
number of copies, but only if Wn grew excessively large. A good choice was 
neopy -- int[ x / W , , / W  > ]. 

The last point which can change the efficiency of the algorithm is the 
neighbor selection probability p,,(k).  In agreement with ref. 12 we found 
that it was not useful to include in it the Boltzmann weight for the contact 
energy. Most likely, a large number of contacts gives an immediate advan- 
tage but leads to a higher risk of getting blocked later. But for large x we 
found it important to favor straight steps over right angles. In the simplest 
case we thus used 
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1 /mn-  l 

e#"/(m._ ] + e#" - 1 ) 
p,,(k) = 1/(m,,_ ~ + e # ' -  1 ) 

going straight is blocked 

going straight 

right angle turn, 

although straight is not blocked 

(5) 

In the ordered phase, it was useful to go even further and enhance p , ( k )  
even more for straight steps if the previous step had also been straight. 

3. T H E  E) -COLLAPSE L INE 

For small stiffness, the end-to-end distance Re is the easiest and most 
straightforward indicator for the coil-globule transition. At To, we expect 
R e . N , ~ N  1/2 up to  logarithmic corrections. (3' Is) But, as we noted already, 
this collapse is" delayed for stiff chains. Thus Re is not very useful for large 
values of x. This is illustrated in Fig. 1, where we see that we need chains 
of length N > 1000 to pin down To. 

Z 

N 3 

2 

1 

x = l O  
. . . . . . . .  ' l  . ,  �9 . - ,  �9 �9 �9 ' -  � 9  i . . . . . . . .  i ~ '  �9 �9 

\ 

1 10 1 O0 1000 
N 

Fig. 1. R2.~/N for chains with x - 1 0 ,  and for Boltzmann factors q-1 .247,  1.249, 1.252, 
1.255, 1.258, 1.261, 1.264, 1.267, 1.270, and 1.273 (from flattest to most curved lines). Notice 
that statistical errors for different values of N are strongly correlated since values for all N 
were obtained from the same runs. This remark holds also for Figs. 2 and 4-8. Data for 
different q are however from completely independent runs. Therefore, rough estimates of 
statistical errors can be obtained by comparing curves for different q. Again this remark holds 
also for later figures. 
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A more useful observable could be the second virial coefficient which 
should vanish at To. But measuring it for interacting chains is a bit 
awkward. (15) For a-thermal chains there exists the very elegant Karp-Luby 
algorithm, (2~ but no similarly elegant algorithm seems to be known for 
thermal chains. 

We found the most efficient method to measure To to be one due to 
Dickman. (21) Here we use the fact that the pressure vanishes at Ta, and 
that pressure is defined as the derivative of the free energy with respect to 
volume. We thus study simultaneously chains in two different volumes, of 
sizes L0 and L1 = 2L0, and compare their partition functions Z~v(Lo) and 
Z~v(L~). More precisely, in order to reduce statistical fluctuations, we start 
with a single chain on a lattice with periodic b.c. with period L~ (actually 
we used "helical" b.c.2 where each site is labeled by a single index i, and 
i+L~ =i). At each monomer insertion we update both Z~v(Lo) and 
Z~v(Lt), and we check whether the contact energy would change if we 
would replace the periodicity by Lo = LI/2. As soon as this is the case, we 
replace the chain by two copies, one on volume L~ and the other on L3o, 
and let iboth copies grow further independently. In this way we measure the 
quantity 

Z~r(Lo) - Z~r(L1) 
AZ(N, Lo)= (6) 

Z~(L1) 

Notice that we do not have to check whether self-avoidance is violated on 
Lg and not violated on L~" when that can happen, the contacts have 
already been different for some previous N, and we have already two dif- 
ferent copies. 

The advantage of this algorithm over two independent runs on lattices 
of sizes Lo 3 and L~ is that AZ(N, Lo) vanishes exactly for short chains. For 
very long chains, it must go to - 1 .  For T >  To it is negative for all N 
(pressure is always positive), but for T <  Te there should exist a range 
where pressure is negative and thus AZ(N, Lo)>0. For x =  10 this is 
shown in Fig. 2. In this figure, the same set of temperatures are used as in 
Fig. 1. We see very clearly that all curves except one correspond to already 

2Since we used rather small lattices (Lo=64 to 128) with helical boundaries, one might 
wonder what was the chance to hit a completely straight configuration. Such a configuration 
would have a very high Boltzmann weight and could represent an important finite size 
artifact since it would be absent for periodic b.c. But such configurations were never observed, 
and it is easily estimated that they are indeed negligible. For given values of stiffness x and 
temperature T, the chance to make n subsequent straight steps is (1 +4e-x/r)  - ' .  Lattices 
with Lo=64 were used for x/T<2.3, for which (1 +4e-X/r)-64< 10 -9. Thus a completely 
straight configuration was never realized. A similar estimate holds for the largest values of 
x/T where we used Lo = 128. 
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collapsed chains. Actually, the argument is a bit more subtle due to finite 
size corrections which we have so far neglected. Simulations show that 
AZ(N, Lo) > 0 even at T =  To, but its maximum with respect to N does not 
increase with Lo unless T <  To. Thus a precise determination of To is 
possible by comparing different lattice sizes. Since maxNAZ(N, Lo) is 
slowly varying with stiffness x, it is sufficient to make this finite size 
analysis at few values of x. 

The results are shown in Fig. 3. They fully agree with those obtained 
from Re.N, but are much more precise for large x. Most of them were 
obtained with Lo = 26 and N.~ 5000. The error on To is typically less than 
1%, independent of x. We see clearly that To increases with stiffness, i.e., 
stiffness increases the tendency to collapse. 

4. THE FREEZING TRANSITION 

At low temperature the chains are expected to undergo a first order 
transition toward a phase characterized by global order, at an x-dependent 
temperature TF(x). The low energy configurations should appear as a 
bundle of linear parallel pieces in contact one to each other, with as few 
turns as possible. 

To monitor the freezing transition, and to verify that it is first order, 
we observed three different quantities: 

1. The average number of contacts per monomer, ( m ) ,  which 
measures the contact energy. For large N this quantity should show 
a discontinuity at TF. But this discontinuity is very broadened at 
finite chain lengths, except at very large values of x. Thus we have 
very large finite size effects, and ( m )  is not practically useful as an 
order parameter. 

2. The fraction fs of straight (trans) bonds, fs. This measures the stiff- 
ness energy and the local ordering of the chain. In contrast to 
( m ) ,  this seems very useful as order parameter. Above TF it is 
found to be close to the naive expectation obtained for chains 
without self-avoidance and nn-attraction, 

1 
f~=(1  + ( , / t / ' -2 )q-X)  (7) 

(here jV" is the lattice coordination number; in our case, ~V" =6).  
This is a particularly good approximation for large x. Deviations 
for small x can largely be understood as effects of self-avoidance. 
In the frozen phase fs is close to 1. 

822/89/5-6-12 
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. The fraction of bonds directed in the privileged direction. Let us 
denote by n.,.,ny, and n~ the bonds parallel to either of the 
three coordinate axes. Let us define nmax=max~=,, y.zni, nmin = 
min~=.,..y.~n~, and p =  1--nmin/nmax. If there is no directional 
ordering at all, we have ( p ) ~  1 /~ /~  due to the central limit 
theorem. In the opposite case of an ordered phase, we have 
p --+ const for N--, oo. In the intermediate case of weak directional 
ordering, a mean field type argument predicts a power law decay, 
p ~ N -~, with non-universal exponent 0c. 

Notice that neither R~ nor the gyration radius are very useful for 
detecting the ordered phase. We expect to see some changes at TF since 
configurations should change from spherical globules to more rugged 
shapes, but we cannot expect this to be very systematic and easy to 
observe. For this reason, chain sizes were not measured for T ~ TF, except 
for very stiff chains where TF is rather large and where finally the collapse 
is without intermediate globule state. 

We found a dramatic dependence on x in the ease of locating TF. In 
contrast to ref. 2, the authors of which were not able to go beyond x = 3, 
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Fig. 4. Fract ion f ,  ofs t ra ight  joints for x = 3 and  for different temperatures,  plot ted against  chain 
length N. At the freezing temperature,  it should j u m p  from ~, ( 1 + 4 / q  '~) - ~  to a constant  ~ 1. 
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w e  found that t h e  freezing transition is much easier to observe for large x 
than for small x. This should have been expected intuitively: when cooling 
down at small x, we have first a collapse to a disordered globule, and 
ordering sets in only at very low T when the mobility of the chain is 
extremely low. Thus we arc bound to find important metastable states and 
long trapping times. For large x, in contrast, the ordering sets in at rather 
high T when the chain is still highly mobile. To illustrate this, we compare 
in Figs. 4 and 5 the behavior of f~ for x = 3 with that for x = 10. In both 
cases we see quite clear phase transitions, but it is much sharper for x = 10 
than for x = 3. The same is true for p, see Figs. 6 and 7. 

Indeed, we were not able to obtain reliable results for x =  1 and 
N > 150, where the authors of ref. 2 claimed to see a clean ordering trans- 
ition. The problem is that partition sum estimates fluctuate wildly in this 
region. At the freezing point for for x = 1 and N = 200, this could involve 
many orders of magnitude even in samples of several million chains. Thus 
even very large statistical samples were dominated by only few large-weight 
configurations. The authors of ref. 2 grew populations of only 20,000 chains 
(sample'.sizes in the present paper are ~ 4 x 105-  108, depending on N and 

x = l O  
0 7 8  . . . . . .  �9 . . . .  ' . . . . . . .  . �9 - ' I  . . . . . .  ! . . . . . .  I �9 �9 

u ) , = ,  O~  

0.76 

0 . 7 4  

0.72. 

0.7 

0.68 

il  ii!ii!:!!  iiiiii 
. ZTZTZTZTZTIIITZTITZITIITITITIZTIITIITZTIT 

l O  l O 0  -- l O O O  

N 

Fig. 5. Same as Fig. 4, but for x -- 10. The temperatures are the same as in Fig. 1 (from bottom 
to top). The freezing transition seems to take place near T r =  4.25 :t= 0.04 (q f--- 1.265 :i: 0.003). 
Notice the very big fluctuations in the curves for q -  1.270 and 1.273 at large N. They result 
from the fact that ordered states were hit only few times, but each hit gave a huge contribu- 
tion to the partition sum. 
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Fig. 6. Anisotropy parameter p for x = 3 and for the same temperatures as in Fig. 4. At the 
freezing temperature, its behavior should change from power decay to a constant ~ 1. 

on T; lower temperatures required in general higher statistics). Our guess 
is that they grew many such populations for each set of control parameters, 
and averaged the results without weighing them with Z~v. Correct averages 
should include this factor. Neglecting this would reduce greatly the statisti- 
cal error estimates, at the risk of making uncontrolled systematic errors. 

To locate precisely a first order transition, we should in principle make 
a finite size scaling analysis. We indeed see in Figs. 4 to 7 important finite 
size effects: with increasing N the transition point seems to shift towards 
higher values of T. This is as expected: for small N we have important sur- 
face effects which diminish the cooperativity of the interaction. But fluctua- 
tions are too large to allow a systematic analysis. 

In spite of all these problems, we were able to determine TF in a wide 
range of x values (Fig. 3). Our estimates for TF for small x agree nicely 
with those of ref. 2 and of refs. 5-7, 10. The ordering transition for concen- 
trated chains (hamiltonian walks) (5-7" ]o)should coincide with the presently 
studied transition in the limit T ~  0. From these references we expect 
TF/x "*0.66 (6) resp. TF/x---> 0.82, ~]~ for TF ~ 0 .  Our data are in better 
agreement with the latter, although the large statistical errors and the 
evident curvature of the transition line makes an extrapolation difficult. 
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Fig. 7. Same as previous figure, but for x= 15. At this stiffness the transition from coil to 
frozen state takes place directly. From bottom to top the curves represent T= 5.613, 5.435, 
5.3625, 5.339, 5.315, 5.292, and 5.246. The estimated value of Tr is 5.335 +0.01. 

A possible alternative fit to our data is Tp oc x~ This fit is indeed better 
numerically and holds for the entire range of x, but we see no theoretical 
basis for it at small values of x, and it would contradict all previous 
numerical(S-7. 1o.2)and theoretical (2) results. 

The most conspicuous result is that TF reaches the coil-globule trans- 
ition temperature at x ~ 13. Beyond this triple point, we have a direct first 
order collapse from open coils to folded structures. The existence of this 
direct transition is also seen in R,. which drops suddenly at TF when x > 13. 

We stopped our simulations at x > 18, but TF seems to continue to 
grow with x, and we see no good theoretical argument why it should not 
do so. Thus we conjecture that TF would finally tend to infinity. 

As we said already, the average total energy was not very informative. 
More interesting was the contact energy per monomer  ( r n )  = ( # (nn pair 
contacts)) /N.  Instead of showing it as a function of N for various values 
of (x, T), we present it in Fig. 8 as a function of x, at fixed N and T. 
We expect two clear situations, one at T >  Ttnple and the other at 
r,~ ro(o). 
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Fig. 8. Average number of contacts (m) per monomer as a function of the stiffness for fixed 
temperatures. Three different temperatures are considered: T-- 3.332 (below T,), dashed lines; 
T= 3.811 (between T,(0) and Ttri,~=), solid lines; and T= 5.485 (above Ttr~p~=), dotted lines. 
For each value of T we show data for 3 different chain lengths (N= 1000, 3000, and 5000), 
since finite size effects are very important. In particular, one sees that minima of (m) are 
reached at H-dependent values of x, and the effective freezing temperature strongly increases 
with H. 

�9 In the high-T phase, T >  Tt~p~=, we expect that  ( m )  decreases with 
x, until the freezing line is reached. At this points ( m )  should have 
a discontinuity for N =  oo. For  finite N this jump should be 
smeared, but it should still be rather sharp, and it should not show 
any precursor. As long as the chain is in the coil phase and not 
close to the 0-line, increasing stiffness should decrease the number  
of contacts. 

�9 When T is lower than To(0), it is also lower than the collapse tem- 
perature for stiffness x > 0. In this case we are from the beginning 
in the collapsed phase. When T < Te(O), the density is rather high 
for all x, and we do not expect ( m )  to decrease initially. Instead 
we expect first a weak increase with x, which accelerates when we 
pass through the freezing line. This time the freezing line is however 
much less sharp, and we expect much stronger finite-N corrections. 
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Both predictions are supported by Fig. 8. Most impressive is the 
decrease and subsequent jump for large T. The behavior at low tem- 
peratures is less clear, as there are still strong small-N corrections. In par- 
ticular, there is an initial decrease with x for small N. Most difficult to 
interpret are data at intermediate T. The data for T = 3.811 cross the 0-line 
at x ~ 1. For N = oo we should have an increase there with infinite slope, 
as the specific heat diverges logarithmically at To. But the data show a 
steady and systematic decrease. Obviously this is a finite-N effect which 
dominates completely the behavior up to extremely large values of N. 
When we approach the folding line <m> finally increases, with an 
N-dependence intermediate between the two previous cases. 

5. D I S C U S S I O N  

We have been able to map out a large region of the phase diagram for 
semi-stiff chains with self avoidance and nearest-neighbor attraction. This 
region contains the coil-globule transition (second order), the freezing 
transition from molten globule to a folded state (first order), and a triple 
point Where these transition lines meet. We found our algorithm very 
efficient, in particular for very stiff chains where we had expected the 
biggest problems when we started this investigation. 

In our study we observed three features of the phase diagram which 
were not expected on the ground of mean field theory, although the most 
important one, i.e., the existence of a triple point, was already conjectured 
in ref. 2: 

1. The collapse temperature To(x) is an increasing function of the 
stiffness; 

2. The freezing temperature TF(X) is an increasing function of the 
stiffness and it does not show to attain any asymptotic finite value; 

3. At a critical value of the stiffness, TF becomes higher than To, and 
the freezing transition happens without an intermediate globular 
stage. 

It is remarkable that recently a phase diagram strikingly similar to 
Fig. 3 was found in a (variational approximation to a) model of random 
copolymers. (~) In this model, the freezing temperature shows a power law 
dependence on the variance At  of the monomer pair potentials, TF ,~ Ae ~ 
in astonishing analogy with our numerical result Te ~ x ~ (although the 
latter most likely does not give the correct behavior at x--, 0). It is not 
clear whether this coincidence is fortuitous or has a deeper meaning. But 
in any case it makes the present model more interesting as a toymodel  for 
protein folding. The frozen phase of the present model is too ordered to be 
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taken as a good model of the native state of a protein (most of the bonds 
are parallel), but it is conceivable that the frozen disorder of amino acid 
sequences plays a similar role as the stiffness included in the present model. 

A more direct application of the present model might be to very long 
semiflexible polymer chains such as DNA or actin. Of course such 
polymers do not live on lattices. Thus they can be deformed continuously, 
while only discrete deformations are possible in our model. It is well known 
that going from a continuous to a discrete system can have a big effect on 
phase transitions. For spin systems, the Mermin-Wagner theorem says that 
this effect is mainly confined to 2 dimensions, but it is not a priori obvious 
that the same is true in the present case. 

Finally, we have verified that the used algorithm, PERM, is an excellent 
tool for studying polymeric systems at very low energies where all other 
known methods fail. Indeed, we have since used it to find ground states in lat- 
tice polymer rhodels where low-lying states have been given in the literature. 
In these simulations, results of which will be published elsewhere, t22~ we have 
been able to find putative ground states in all cases except one. In several of 
these cases~ we also found states lower than these putative ground states. 
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